

Tailor-made polymeric materials for collectors and heat storages

Prof. Dr. Gernot M. Wallner Subtask Leader C

Johannes Kepler University Linz, Austria Institute of Polymeric Materials and Testing gernot.wallner@jku.at

Introduction and Background

- Development of Polymeric Materials
- Main Fields of Application and Success Factors

Subtask C: Structure, Partners and Selected Results

- Main Topics and involved Partners
- 3 selected Case Studies on Plastics for:
 - Overheating controlled flat-plate collectors
 - Drainback flat-plate collectors
 - Heat storage liner materials

Summary and Outlook

- Solarthermal Market Development
- Material Demand

Development of plastics and steel worldwide (in terms of volume)

SHC Plastics - most widely used material class

Polymeric Materials for Solar Thermal Applications – Final Presentation 10/2014

TASK39

SHC Plastics - main features and success factors

Wide range: property/performance (tailor-made materials)

LED optics

 Freedom of design

 Composites & hybrid materials

 Combination of process technologies Multifunctional integration

100

rask39

Project	Title	Focus
C1	Multi-Functional Polymeric Materials	 Materials for "All-polymeric" Collectors Materials for System Components incl. Heat Storages
C2	Processing and Evaluation of Components	 Extrusion and Injection Moulding of Components Joining techniques
C3	Methods for Testing and Characterization	 Quality assurance Aging and durability characterization

Overheating controlled collectors

Thermotropic materials – Requirements and Achievements (Univ. of Leoben (Austria); Univ. of Minnesota (USA); EMS (Switzerland))

Overheating controlled collectors

Absorber materials for overheating protected collectors (Borealis, Univ. of Linz, AEE INTEC, Univ. of Innsbruck (Austria))

Development and lifetime estimation for PP absorber materials (JKU IPMT; AEE INTEC, Austria)

Requirements for absorber materials in drainback collectors (Univ. Oslo, Aventa (Norway))

Drainback flat-plate collectors

Processing, testing and lifetime estimation of PPS (Univ. Oslo, Aventa (Norway), Chevron Philips (Belgium), DS Smith (France), ISE (Germany))

Drainback flat-plate collectors

Multifunctional coatings for PPS absorbers (NIC, Color (Slovenia), Univ. Oslo, Aventa (Norway))

Thickness Insensitive Spectrally Selective (TISS) paints

Estethic colors

Self-cleaning capability

Liner materials for seasonal hot water storages (AGRU, Univ. of Linz (Austria))

Example SUNSTORE4, Marstal, DK (75 000 m³ water)

Floating insulating cover Polymeric liner

Dimensions:

- ➤ Volume: 1.000 100.000 m³
- Demand of liner: 250 25.000 m²

Criteria for *liner materials:*

- Flexibility for easy installation:
 - E ≈ 600 MPa (at RT)
 - − Liner thickness: \approx 2 mm
- Key requirements:
 - Tmax = $95^{\circ}C$
 - 4,000 h/a ≈ 65-85°C
 - 4,000 h/a ≈ 30-60°C
- Environment:
 - Water heat carrier
 - Air / water vapor
 - Soil chemistry (minerals)
- Service lifetime: ≥ 30 years

Accelerated aging characterization by Specimen Miniaturization (Univ. of Linz (Austria)) Aging equipment (air, Automized production water water vapor) and indicators of micro-sized specimen

Aging characterization

Mechanics (Tensile Testing):

Strain at break ($\varepsilon_{\rm B}$)

Spect

roscopy:

Carbonyl index (C.I.)

Thermoanalytical Methods:

Oxidation onset temperatur (OOT)

Chromatography:

Content of stabilizers (esp. antioxidants)

Durability of polyolefin compounds (benchmark vs. novel grades) (Univ. of Linz, AGRU, APC (Austria))

Polyethylene (PE) grades:

Ranking: PE-RT 2 > PE-RT 1 > PE-HD

Water aging more severe than air aging.

Novel polypropylene (PP) exhibit a better durability.

Lifetime estimation

Spin-off:

News > High Temperature Resistant Geomembrai No embrittlement for all gr exposure in hot air and wa High Temperature Resistant Geomembrane 900d (2.5 years).

07.01.2014 LINING SYSTEMS - General - Research

AGRU for many years has supplied PE pipes for hot water applications. With this vast knowledge and experience AGRU developed the first high temperature resistant (HTR) PE geomembrane in the marketplace. It looks, feels and welds like every other HD-PE geomembrane. Additionally it offers an outstanding

Global Solar Thermal Heat based on 100% Renewable Energy Scenarios

- (1) To keep up with the ambitious 100% scenarios, and
- (2) to strengthen (or even maintain) its position as a main component in a future solar technology mix,

the solar-thermal industry needs a strong innovation push by enhanced R&D efforts.

Source: K. Holzhaider (2014)

<u>Clobal Calar Thormal Hoat bacad on 100% Ponowable Energy Sconarios</u>

- (1) To keep up with the ambitious 100% scenarios, and
- (2) to strengthen (or even maintain) its position as a main component in a future solar technology mix,

the solar-thermal industry needs a strong innovation push by enhanced R&D efforts.

(3) Apart from significant polymer-induced innovations, there is no other single innovation driver in sight to achieve the more ambitious scenarios.

Source: K. Holzhaider (2014)

Global Cumulative Material Demand for Polymer Based Solar Thermal Systems

million t

- (1) Low temperature heat supply is currently based on fossil (carbon) fuels.
- (2) To achieve 100% renewable energy scenarios an average annual plastics demand of 8.2 million t/a would be needed.
- \rightarrow Highly attractive market perspective for the oil/gas and plastics industry.

