

SCREENING VON FASERVERSTÄRKTEN POLYAMIDEN FÜR SPEICHERKOLLEKTORSYSTEME

Patrick R. Bradler, Joerg Fischer, Gernot M. Wallner, Reinhold W. Lang

Institute of Polymeric Materials and Testing, Johannes Kepler University Linz, Austria

04. Oktober, 2017

INTRODUCTION AND SCOPE

SolPol-4/5 (WP-03):

Solar-thermal Systems based on Polymeric Materials – Novel Materials and Test Methods

Replacement of metals by polymeric materials to:

- reduce weight and increase ease of installation
- increase reliability and lifetime
- enable attractive design at improved cost/performance ratio

Relevant environmental conditions:

- temperature up to 95°C
- pressurized, water filled pipes with up to 6 bar (incl. oscillation)

mechanical properties and fatigue crack growth (FCG) behavior at application relevant temperatures

GENERAL BACKGROUND – REGION II

Fatigue crack growth (FCG) properties – basics

Basic assumptions of linear elastic fracture mechanics (LEFM)

(stress based: stress intensity factor K)

- linear-elastic material behavior
- small plastic zones
- K describes the crack tip near-field

GENERAL BACKGROUND – REGION II

GENERAL BACKGROUND – REGION II

EXPERIMENTAL – MATERIALS

	Phenolic (P)			Aminic (A)			Specific (S)	
	Irganox 1098 (P1)	Bruggolen H164 (P2)	Irganox 1330 (P3)	Naugard Super Q (A1)	Naugard 445 (A2)	Bruggolen H204 (A3)	Stabilisator 9000 (S1)	Bruggolen H3360 (S2)
PA	Polyamide 66 (PA) GF 30 – matrix material							
PA-P1	1							
PA-P2		1						
PA-P3			1					
PA-A1				1				
PA-A2					1			
PA-A3						1		
PA-S1		0.4					0.6	
PA-S2								1
PPA	Polyphthalamide (PPA) GF 45							

EXPERIMENTAL – TEST METHODOLOGY

JYU

2017-10-04 / page 7

EXPERIMENTAL – TEST METHODOLOGY – DYNAMIC MECHANICAL ANALYSIS

Anton Paar Physica MCR 502 Rheometer

test parameters

- torsional mode
- deformation: 0.1 %
- frequency: 1 Hz
- temperature range: -60°C 240°C
- heating rate: 3 K/min

EXPERIMENTAL – TEST METHODOLOGY – FATIGUE TESTS

Instron ElectroPuls E3000 with optical crack growth measurement

- 1 testing machine (Instron E3000)
- 2 machine controlling computer
- 3 temperature control system
- 4 camera controlling and data evaluation computer

- 5 glass containment
- 6 LED flashlight
- 7 specimen
- 8 camera

test parameters:

- frequency: 5 Hz
- R-Ratio: 0.1
- temperatures: 23°C, 80°C, 95°C

EXPERIMENTAL – TEST METHODOLOGY – FATIGUE TESTS

Data evaluation – CT specimen

measurement procedure:

- trigger of the camera system using a real time machine
- image recording at F_{max}

data evaluation:

- image processing and crack length measurement using pixel comparison
- calculation:

$$K_I = \frac{F}{B \cdot \sqrt{W}} \cdot f\left(\frac{a}{W}\right)$$

 fatigue crack growth (FCG) rate da/dN vs. stress intensity factor K_{I,max}

RESULTS – DYNAMIC MECHANICAL ANALYSIS

Storage modulus:

- PPA >> PA > PA-P2 > PA-A2
- higher deviation with increasing temperature

Glass transition temperature:

- PPA: 121°C
- PA / PA-P2 / PA-A2: 59°C / 56°C / 55°C

Storage modulus:

- PPA > PA types
- PA-A2 > PA-P2 at -50°C
- PA-A2 < PA-P2 above Tg
- significant change in deviation with increasing temperature

Glass transition temperature:

- PPA: 55°C
- PA / PA-P2 / PA-A2: -19°C / -22°C / -23°C

RESULTS – INFLUENCE OF ORIENTATION ON FCG-PROPERTIES

PA

- significant influence of melt injection direction (ID); caused by fiber orientation in force direction
- improved behavior for specimen normal to ID: factor 3.5 at K=4
- increasing improvement with higher K-values (lower slope)

RESULTS – INFLUENCE OF TEMPERATURE ON FCG-PROPERTIES

PA

- significant influence of temperature
- improved behavior at lower temperatures (80°C): factor 15 at K=4
- similar slopes

RESULTS – INFLUENCE OF TEST ENVIRONMENT ON FCG-PROPERTIES

PA

- minor influence of water
- slightly increased crack growth resistance in water
- slope for water environment slightly increased

J⊻U

RESULTS – INFLUENCE OF STABILIZER SYSTEMS ON FCG-PROPERTIES

PA, PA with amino based stabilizer, PA with phenol based stabilizer, PPA

J⊻U

RESULTS – INFLUENCE OF STABILIZER SYSTEM ON FCG-PROPERTIES

2017-10-04 / page 16

SUMMARY

Dynamic mechanical analysis

- PPA exhibits highest storage moduli and T_g-values due to glass fiber content and morphology
- storage moduli for PA-types with different stabilizer systems:
 - PA > PA-P2 > PA-A2 at 95°C conditioned
 - higher deviation with increasing temperature due to fiber content
- similar T_q-values for PA-types with different stabilizer systems

Fatigue testing

- improved resistance for specimen normal to ID (factor 3.6)
- superior FCG behavior at lower temperatures (factor 15)
- slightly increased performance for specimen tested in water
- material ranking:

PA-P2 > PA > PA-A2 >> PPA

ACKNOWLEDGMENT

This research work was carried out in the cooperative research project SolPol-4/5 (Solarthermal Systems Based on Polymeric Materials: Novel Pumped and Non-Pumped Collector-Systems).

The project is funded by the Austrian Climate and Energy Fund (KLI.EN) within the program "e!MISSION.at" and administrated by the Austrian Research Promotion Agency (FFG).

