Improvements Developed during the IEA SHC Task 54

Technical Improvements

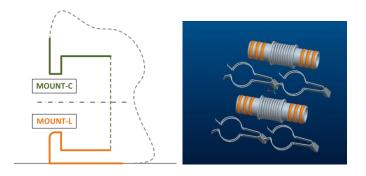
Dr. Alexander Thür¹ Dr. Federico Giovannetti² Dr. Stephan Fischer³

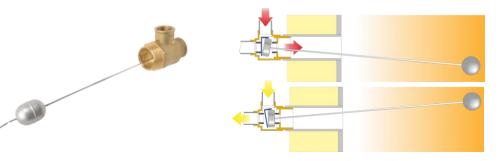
¹ University Innsbruck, Austria
² ISFH, Germany
³ IGTE, Germany

ISEC 2018 Graz, Austria

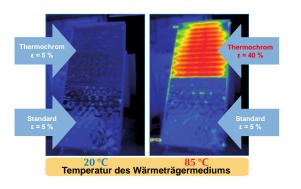
ISE

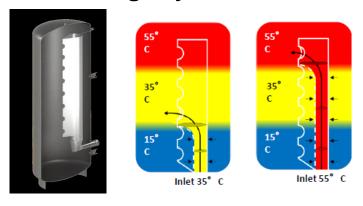
19 September 2018





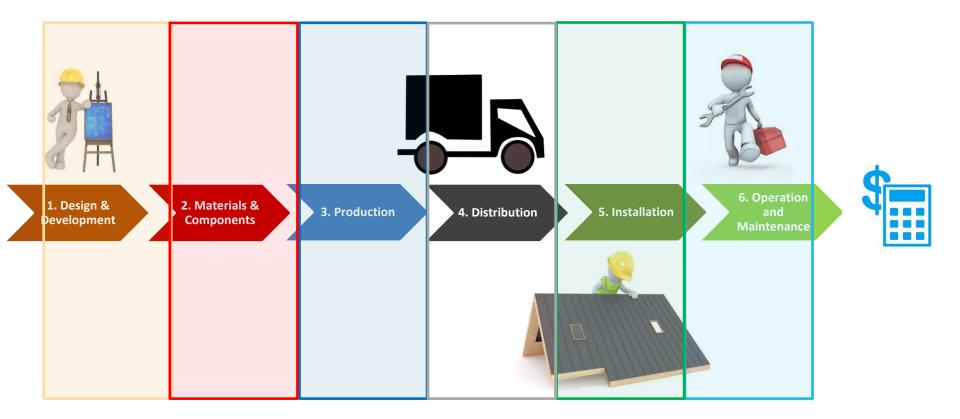
Some technical improvements investigated in the frame of TASK 54


Standardization

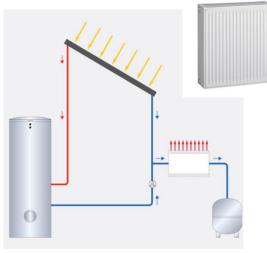

Simplified system control strategies

Collectors for overheating protection

More efficient storage systems

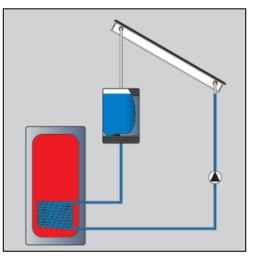


Technical Improvements along the Solar Thermal Value Chain



Case study 1: Overheating protection – State of the Art

Cooling devices

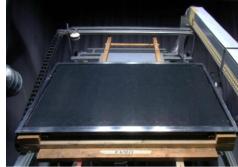

Source: Viessmann

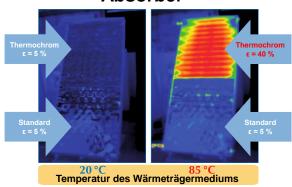
Shading

Source: Home Power Inc.

Drainback

Source: Solar Technologie Int.



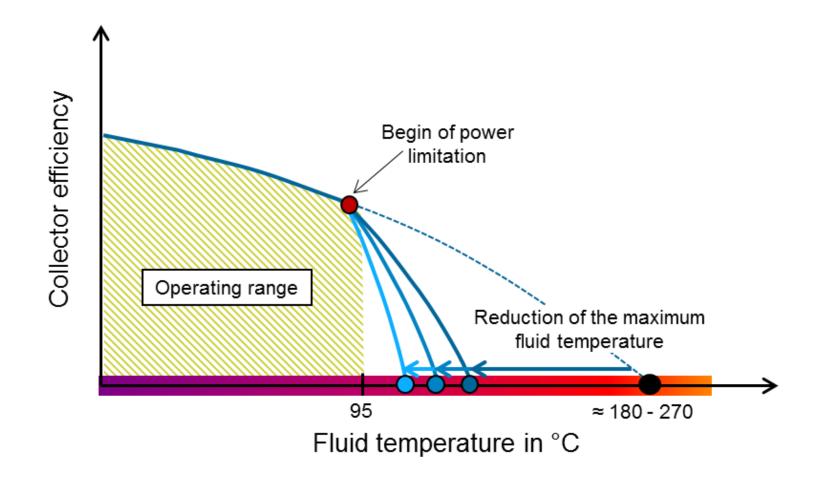


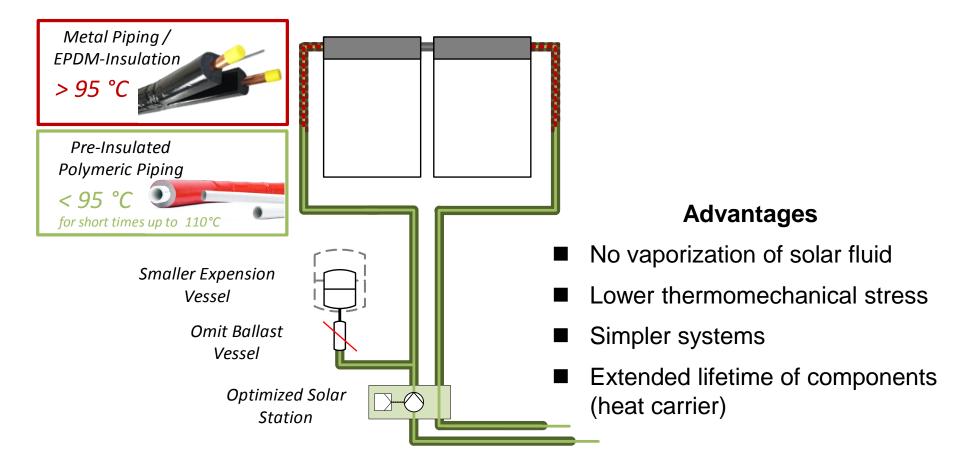
Heat Pipes Working principle "Automatically" power shut-off by heat pipe increasing heat losses manifold Reduction of stagnation temperature absorber Institute for Solar Energy Research Hamelin ISFH Thermo-induced Thermochromic Thermomechanical **U-value switcher** Absorber Valves

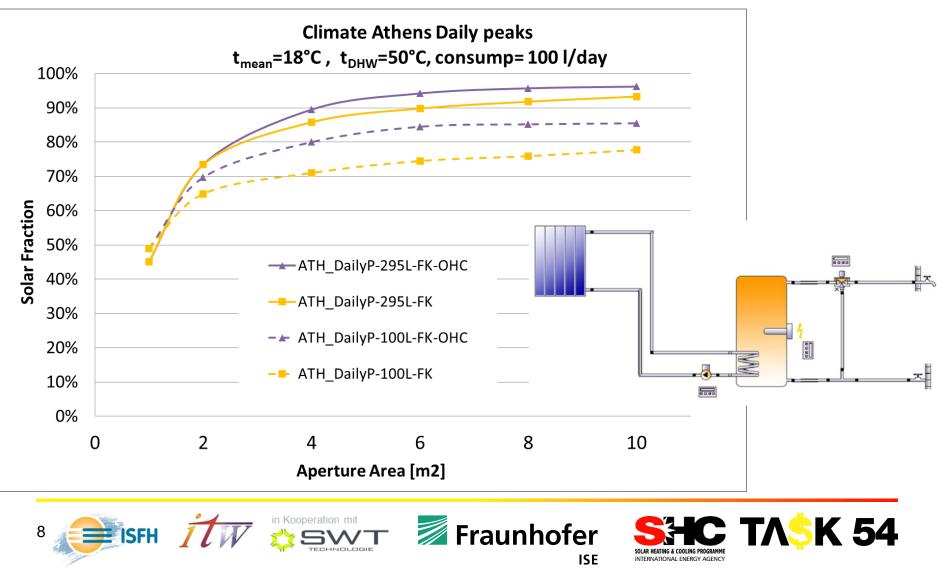
HSR University of Applied Science Rapperswil

Institute for Solar Energy Research Hamelin ISFH

University of Innsbruck







Cost reduction potential by tank size reduction due to system performance increase.

Case study 1: Collectors with overheating protection Expected improvement for heatpipes-systems

Solar Domestic Hot Water System	Reference System	Expected improvement	Heatpipe System
Investment System [€]	2.600	- 18 / - 9 %	2.135 / 2.359
Installation [€]	1.250	- 20 / - 8 %	1.000 / 1.150
Maintenance [€/a]	77	- 64 / - 50%	28 / 39
Energy saving [kWh/a]	2.226	+0 %	2.226
Lifetime [a]	25	+0 %	25

Case study 1: Collectors with overheating protection Cost reduction potential heatpipes-systems

Levelized Cost of Heat (LCoH) – SDHW System

LCoH _{sol,fin} Reference System (without VAT)	0.113 €/kWh
LCoH _{sol,fin} Heat pipe system (without VAT)	0.078 – 0.089 €/kWh
Cost reduction potential für solar heat	21 - 31%

Case study 1: Collectors with overheating protection Cost reduction potential heatpipes-systems

Levelized Cost of Heat (LCoH) – SDHW System

LCoH _{ov,fin} Conventional System (without VAT)	0.113 €/kWh
LCoH _{ov,fin} Heat pipe system (without VAT)	0.115 – 0.117 €/kWh
Additional effort for solar assisted SDHW	2 - 4 %

Case study 2: Standardization

Standardization & mass production lead to...

- Lower production costs
- Easy packaging, storage, logistics
- Easier installation
- Low failures
- Higher energy efficiency

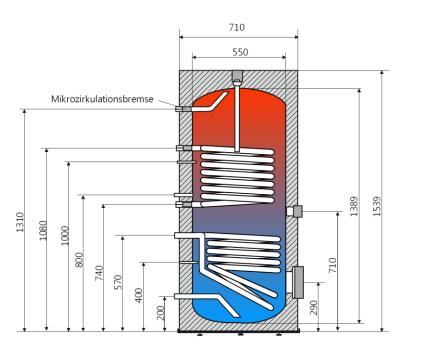
ISE

but are not established in solar thermal!!

Global System for Mobile Communications

Case study 2: Standardization in solar thermal systems

ISE

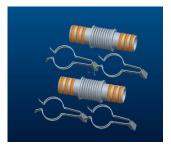


Different

mounting systems

Case study 2: Standardization - TASK proposals

Standardize dstorages



Standardized

collectors

Standardized mounting systems

Case study 2: Standardization Expected Improvement for SDHW System

Solar Domestic Hot Water System	Reference System	Improvement	"Standardized" System
Investment System [€]	2.600	-10 %	2.340
Investment Installation [€]	1.250	-10 %	1.125
Maintenance&Operation [€/a]	97	-24 %	74
Energy saving [kWh/a]	2.226	+10 %	2.449
Lifetime [a]	25	+10 %	27.5

Case study 2: Standardization Cost reduction potential for SDHW systems

Levelized Cost of Heat (LCoH) – SDHW System

LCoH _{sol,fin} Reference System (without VAT)	0.113 €/kWh
LCoH _{sol,fin} Heat pipe system (without VAT)	0.080 €/kWh
Cost reduction potential für solar heat	29%

Case study 2: Standardization Cost reduction potential for SDHW systems

Levelized Cost of Heat (LCoH) – SDHW System

LCoH _{ov,fin} Conventional System (without VAT)	0.113 €/kWh
LCoH _{ov,fin} Standardized system (without VAT)	0.114 €/kWh
Additional effort for solar assisted SDHW	1%

Conclusion

- TASK 54 analysed several technical improvements for cost reduction
- Standardization and temperature limitation in the solar loop are identified as most promising general approaches
- Cost of solar heat can be reduced by about **30% with single measures**
- **Higher cost reduction** by combining different measures are possible
- Cost of heat for improved solar assisted DHW systems is comparable to the cost of heat for conventional systems

19

Thank you for your attention!

Arbeitsbereich für Energieeffizientes Bauen

University of Innsbruck

Alexander Thür

www.uibk.ac.at

Alexander.Thuer@uibk

More on Task 54:

http://task54.iea-shc.org

<u>https://twitter.com/iea_shc_task54</u>

