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This is an update of the April 2009 Solar Update article.  The objective of the 2009 article 
was to put in perspective the potential of often-cited nuclear and renewable alternatives to 
Greenhouse Gas (GHG) emitting fossil energy sources. Its main conclusion was that although 
a mix of alternatives, including hydropower, biomass/biofuels, geothermal, ocean thermal 
energy conversion, waves, tides, wind and solar, appeared like a sound approach to bringing 
about the desired economically and environmentally sustainable energy future (akin to putting 
future energy eggs in different baskets), a review of their potential clearly showed that the 
solar resource dwarfed all other renewables (and fossil/nuclear alike) by orders of magnitude. 
And therefore, the desired economically and environmentally sustainable energy mix of the 
future should be essentially solar-based.

The three-dimensional rendering appearing in the April 2009 Solar Update and reproduced 
here in Figure 1 compared the annual energy consumption of the world at the time to (1) 
the known economically exploitable reserves of the finite fossil and nuclear resources and (2) 
the yearly potential of the renewable alternatives. The volume of each sphere in the figure 
represents the total amount of energy recoverable from the finite reserves and the energy 
recoverable per annum from renewable sources.

Conditions have evolved since 2009, thus the rationale for this update. The energy 
consumption of the world has increased nearly 12% to 18.3TW-yr per annum in 2014 [26]. 
We estimate it will reach 27TWyr per annum in 2050. The economically exploitable fossil fuel 
energy reserves have increased appreciably thanks to the development of hydraulic fracturing 
technologies along with exploitation of the Canadian tar sands and Venezuela’s Orinoco 
basin – although many question the correspondingly increased CHG and other environmental 
impacts of these technologies.

Figure 2 illustrates the current conditions. 
Overall, the conclusions remain the same 
– solar remains the largest resource by far. 
Even when pushing economically acceptable 
fossil sources to their current limit, the global 
picture is basically unchanged. Especially if one 
considers that the threshold for economic 
viability will be lowered by environmental 
pressure and, more effectively perhaps, by the 
fact that solar is rapidly becoming the lowest 
cost resource on a straight energy production 
basis, further lowering the economic viability 
threshold of other sources.

Figure 2 Notes:

1.  The uranium sphere [13-20] assumes direct 
fission of all known exploitable sources of 
uranium on the planet including reasonably 
assured and inferred reserves, as well as 
prognosticated and speculated reserves, 
and uranium extractable from phosphates. 

�  Figure 1: 2009 estimate of 
finite and renewable planetary 
energy reserves (Terawatt-
years). Total recoverable 
reserves are shown for the 
finite resources. Yearly 
potential is shown for the 
renewables.
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However it does not include 
uranium that could be extracted 
from seawater (a technology that 
does not yet exists). The dotted 
outline represents the nuclear 
potential that would be achievable if 
100% of all fission byproducts were 
ideally reprocessed.

2.  The yearly geothermal potential 
illustrated is based on the IEA 
cumulative recoverable estimate of 
85 GW-yr to the year 2050 using 
conventional technologies [22]. 
Future, yet highly environmentally 
questionable, deep hydro-fracking-
based technologies known as 
enhanced geothermal systems (EGS 
[23]) could enhance geothermal 
recovery well over a 100-fold 
(dotted line). These technologies do 
not exist today.

3.  2015 global primary energy use is extrapolated from the 2014 reference [26] by linear forecasting.

Another point that many have questioned in the 2009 article is that the solar resource potential 
represented is that of the entire planet (excluding oceans), accounting for weather, but assuming perfect 
conversion efficiency. However, even if one only assumes optimal solar deployment in urban/suburban 
areas of the world [23, 24] plus transportation and other networks and small amount of central plants 
deployment – a total amounting to <4% of land area, and a conversion efficiency of as little as 20% 
(achievable today and a very conservative estimate for the years to come) solar remains the essential part 
of the energy mix of the future. In addition, while with such efficiency and deployable land limits, the 
one-year solar potential would “only” be of the order of the planetary reserves of coal, a multiple-year 
outlook unquestionably shows that solar is the overwhelming energy solution for the future of the planet.

This article was contributed by Richard Perez of the Atmospheric Sciences Research Center, University at 
Albany, Statue University of New York, perez@asrc.cestm.albany.edu and Marc Perez of MGH-Energy. 
Richard Perez is an expert of SHC Task 46: Solar Resource Assessment and Forecasting. This Task, led by 
David Renné, provides the solar energy industry, the electricity sector, governments, and renewable energy 
organizations and institutions with the means to understand the “bankability” of data sets provided by public 
and private sectors.
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