IEA SHC Task Meeting **Task 53** 11th till 13th of April 2016, ATECYR, Madrid, Spain

Solar PV Cooling

set in operation and system measurements on going work

Lukas Omlin, Paul Gantenbein E-Mail: lukas.omlin@spf.ch, paul.gantenbein@spf.ch Institute for Solar Technology SPF University of Applied Sciences Rapperswil

FHO Fachhochschule Ostschweiz

INSTITUT FÜR SOLARTECHNIK

Agenda

Content

- System
- Set in operation first measurement results (active cooling, free-cooling)
- System States and Control measurement results (domestic hot water preparation)
- Conclusion and Outlook

Hydraulic schematic apparatus, tubes (sensors & DAQ) 1. Measurement Equipment and Data Acquisition

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

Main Components

PV modules (Meyer Burger) - south oriented

Cooling machine (HP; ait / Nibe) & storage tanks.

Main Components

Cold ceilings (Zehnder) installed in the Laboratory (52.5m²).

Outdoor unit

Main Components

Component	Manufacturer / Distributor	Туре	Description
PV Modules	MEYER BURGER AG	Sky 285	9 modules (285 W _p nominal power)
			orientation: $\alpha = 8^{\circ}$ West, inclination: $\beta = 15^{\circ}$
Inverter	SMA	TL2500	2.5 kW nominal power
Heat Pump	Nibe	F 1155-6	brine / water heat pump (7 kW cooling power)
Cold Storage	alpha innotec	TPSK 500	445 I storage
Hot Storage	alpha innotec	SWWS 506	477 I immersed heat exchanger
Outdoor Unit	WT AG	-	brine - air heat exchanger (outdoor unit)
Cold Ceilings	Zehnder Group Schweiz AG	Zip2	25 elements (dimension: 3 m x 0.704 m)
Heat Transfer	Abderhalden Harapol AG	Minoltherm	Antifreeze heat transfer fluid based on water with
Fluid			20 wt.% ethanol
Meteo Station	SMA	SMA Meteo	irradiance, outdoor ambient temperature,
		Station	PV module temperature

System states «active cooling»

Charging the cold storage and heat rejection to the ambient

SPF INSTITUT FÜR SOLARTECHNIK

«active cooling» measurement results

Active cooling and heat rejection to the ambient

day time (hh:mm:ss)

«active cooling» measurement results

Active cooling and heat rejection to the ambient

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

SPF INSTITUT FÜR SOLARTECHNIK

System state «free-cooling»

Charging the cold storage tank, outside ambient air as heat sink

HOCHSCHULE FÜR TECHNIK RAPPERSWIL FHO Fachhochschule Ostschweiz

10

«free-cooling» measurement results

Cold preparation with free-cooling

Cold preparation with free-cooling

12

System states «domestic hot water preparation»

Charging the hot water storage tank, outside ambient air as heat source

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL FHO Fachhochschule Ostschweiz

SPF INSTITUT FÜR SOLARTECHNIK

13

System states «domestic hot water preparation»

Stop Domestic Hot Water preparation.

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL FHO Fachhochschule Ostschweiz

«domestic hot water preparation» measurement results

Produced PV Power and the electrical energy consumption of the system

«domestic hot water preparation» measurement results

Heat pump power during the heating season (winter time)

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

SPF INSTITUT FÜR SOLARTECHNIK

«domestic hot water preparation» measurement results

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

17

Conclusion and Outlook

- Summary and Outlook
 - **1.** Further test and measurements
 - 2. Development of additional control strategies
 - 3. Simulation and validation of the system in Polysun
 - 4. Find the relevant parameters for scaling up the system to higher power

Partners

CombiVolt I

Impulse

- increasing PV production
- first «smart heat pumps» on market, advertised to both optimize selfconsumption of PV electricity and to deliver grid services to electricity utilities
- but: how is their performance?

Project aims

- analysis of the influence of intelligent control for heat pumps on PV-selfconsumption and on grid-stability
- comparison of electrical and thermal storage
- consideration of different electricity tariff models (current and future scenarios)

CombiVolt II

Procedure

- whole system testing in the lab of 4 different systems
- simulation (e.g. extrapolation of measured system data, variation of climate data, load or tariff models, comparison realized vs. possible potential, electrical vs. thermal storage)

Project partners

- Energie Zukunft Schweiz
 (think-tank of 7 electricity utilities)
 + 3 more public electricity utilities
- 4 heat pump and system manufacturers

Contact

Evelyn Bamberger (evelyn.bamberger@spf.ch) Institute for Solar Technology SPF University of Applied Sciences Rapperswil ethermal probes gethermal probes for the state of the sta

